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S

Family studies to identify disease-related genes often collect families with multiple cases.
If environmental exposures or other measured covariates are also important, they should
be incorporated into these genetic analyses to control for confounding and increase statisti-
cal power. We propose a two-level mixed effects model that allows us to estimate environ-
mental effects while accounting for varying genetic correlations among family members
and adjusting for ascertainment by conditioning on the number of cases in the family. We
describe a conditional maximum likelihood analysis based on this model. When genetic
effects are negligible, this conditional likelihood reduces to standard conditional logistic
regression. We show that the simpler conditional logistic regression typically yields biased
estimators of exposure effects, and we describe conditions under which the conditional
logistic approach has little or no bias.

Some key words: Ascertainment correction; Conditional logistic regression; Correlated binary data; Family
study; Misspecified model; Nested random effects model.

1. I

This paper was motivated by data on 150 families that were chosen to study the genetic
aspects of nasopharyngeal carcinoma in a collaborative study supported by the National
Institutes of Health in Bethesda, Maryland, and the Institute of Epidemiology at the
National Taiwan University in Taipei. Families were included only if they had two or
more affected family members. Although the primary purpose of this study is to detect
genes that predispose to nasopharyngeal carcinoma, it is important to determine if environ-
mental covariates also play a role. If so, these environmental factors should be incorpor-
ated into the genetic analysis to control for confounding and improve the power to find
genes associated with the carcinoma. It is thus desirable to be able to use data from family
studies to estimate the effects of environmental exposures before attempting to identify
susceptibility genes. This is challenging because (i) the families were selected only if they
had multiple affected members and (ii) unmeasured familial and genetic effects that induce
correlated responses need to be taken into account. A natural approach to account for
ascertaining families with a fixed number of cases would be to conduct a matched case-
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control analysis with matching on family and to use conditional logistic regression that
conditions on the number of cases in the family. We show that this approach can lead to
underestimates of exposure effects if genetic correlations are ignored.
In § 2 we introduce a two-level mixed effects model to account for common familial

effects and for different genetic correlations among family members. We adjust for ascer-
tainment by conditioning on the number of cases in the family and performing conditional
maximum likelihood analysis based on this mixed effects model. We show in § 3 that
estimators based on this model yield consistent estimators of covariate effects when the
covariate has no effect on disease status even with a misspecified random effects distri-
bution. A special case of misspecification results in standard conditional logistic regression.
We show that estimators based on standard conditional logistic regression yield consistent
estimators of covariate effects in three situations: when the genetic influences are negligible;
when the disease is rare and the familial and individual random genetic and fixed effects
are small; and when the covariate has no effect on disease status. In all other situations
estimators of covariate effects based on standard conditional logistic regression are biased.
An approximation to the bias is given for the case of small covariate effects. For the special
case of families of size two, such as a case-control study of pairs of siblings, we derive
explicitly the bias of the conditional logistic regression estimator of the covariate effect.
The results in § 3 do not require any assumptions on the distributions of the familial and
individual genetic random effects. In § 4, we specialise the distribution of the genetic
random effects to reflect Fisher’s (1918) model for polygenic effects. We compare the
performance of the two-level mixed effects model with that of conditional logistic
regression using data simulated from the polygenic model. The conditional logistic
regression bias estimates from the simulations are compared with analytical bias calcu-
lations. In § 5 we analyse a subset of the nasopharyngeal carcinoma data using the different
analytical approaches. In § 6 we discuss our results and related work and mention other
applications of the two-level mixed effects model, including applications to longitudinal
studies.

2. T      

2·1. Model formulation

The family data consist of a binary disease status variable Y
ij
for the jth member of the

ith family, together with a covariate variable X
ij
, for j=1, . . . , n

i
and i=1, . . . , m. By a

family we mean a group of people related by blood or marriage. To avoid indefinite
extension of blood relationships throughout a population, we confine attention to families
consisting of a current generation of individuals of reproductive age, their siblings and
offspring and at most two generations of ancestral relatives. We model the probability
distribution of the disease status Y

ij
as a function of the covariate X

ij
, the random familial

effect a
i
, which affects all family members equally, and an individual level random genetic

effect g
ij
for the jth individual in the ith family:

logit ( p
ij
)= logit pr (Y

ij
=1 |a

i
, g
ij
, X
ij
)=m+a

i
+g
ij
+bX

ij
. (2·1)

The a
i
and g

ij
have expectation zero, and (a

i
, g
i
)= (a

i
, g
i1

, . . . , g
in
i

) are assumed to be
independent and distributed with joint distribution F(a, g; l) where l denotes a finite set
of parameters. The g

ij
’s are correlated within the ith family. Different families with differ-

ent pedigree structures have different distributions F(a, g; l), but these distributions
are assumed to depend on the same vector of parameters l. The covariate vectors X

ij
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are assumed to be centred, independent and identically distributed for all i and j and
independent of a

i
and g

ij
.

In the application to the carcinoma data, we assume that the a
i
and g

ij
are normally

distributed and that the covariance of the g
ij
’s corresponds to an additive genetic variance

(Fisher, 1918) as described in § 4·2. We also assume that the a
i
are independent of the g

ij
.

The results in § 3, however, hold for general joint distributions of the random effects.
Model (2·1) is appealing because it allows one to combine information on an individual’s

measured characteristics and covariates, X
ij
, and on the genetic liability g

ij
. In this model

b describes the increase in log relative odds from a unit increase in exposure, X, for an
individual conditional on the random effects. In the nasopharyngeal carcinoma study, the
scientists plan to measure candidate genes. Once the genes are measured, they can be
included as known covariates in model (2·1). The parameter b for an environmental effect
in the model with measured genes would correspond more closely to the b in model (2·1)
than to the parameter b* in a ‘population averaged’ model (Zeger et al., 1988) of the type
logit{pr (Y

ij
=1 |X

ij
)}=m*+b*X

ij
. We are primarily interested in the subject-specific

parameter b, rather than the population-averaged b* as discussed by Zeger et al.
Model (2·1) is an extension of the widely used random effects model that allows for a

cluster-specific intercept a
i
, but assumes that the Y

ij
’s are conditionally independent, given

a
i
and the measured X

ij
; see for example Neuhaus et al. (1991). Diggle et al. (1994, Ch. 9)

presents similar generalised linear mixed models for exponential families with canonical
links. Linear mixed models are often used to study quantitative genetic traits; see for
example Amos (1993). For dichotomous traits, model (2·1) reduces to a model presented
by Houwing-Duistermaat & van Houwelingen (1998) if a

i
and the covariates X

ij
are

omitted, and specialises to a model used by Burton et al. (2000) when a
i
and g

ij
are

normally distributed. Witte et al. (1999) used a fixed effects logistic model in which g
ij

were measured, rather than random effects, to analyse family studies.
Under the logistic model (2·1), the marginal probability of the response in the ith family

can be written as

pr (Y
i1

, . . . , Y
in
i

|X
i1

, . . . , X
in
i

)= P . . . P ani
j=1

pyijij
q1−y
ijij

dF(a, g), (2·2)

where q
ij
=1−p

ij
.

2·2. T he ascertainment correction

To account for the fact that selected families have specified numbers of cases, the likeli-
hood function of the data should be conditioned on the ascertainment event. A family
was included in the carcinoma study only if there were at least two affected family members.
As nasopharyngeal carcinoma is a rare disease, most of the families had exactly two
diseased members. In order to simplify the calculations we condition not on the event
W

j
Y
ij
�2, but on the exact number of affected family members, W

j
Y
ij
=k
i
, for k

i
�2. We

derive analytical results for the case of k
i
=2; they are easily generalised for k

i
=3, 4, . . . ,

and contributions to the loglikelihood can be added from families with different numbers
of affected family members.
For simplicity we rearrange the observed data from each family so that the two diseased

family members are Y
i1
and Y

i2
. To avoid complex notation, we let

d
i
(b)= a

n
i

j=1
{1+exp (m+a

i
+bX

ij
+g
ij
)}−1. (2·3)
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The conditional distribution for family i can be written as

pr AYi1 , . . . , Yini |Xi1 , . . . , Xini , ∑nij=1 Yij=2B
=
pr (Y
i1

, . . . , Y
in
i

, Wnij=1
Y
ij
=2 |X

i1
, . . . , X

in
i

)

pr (Wnij=1
Y
ij
=2 |X

i1
, . . . , X

in
i

)

=
exp{b(X

i1
+X
i2

)} ∆ exp (2a
i
+g
i1
+g
i2

)d
i
(b) dF(a, g)

W

k,lµR
i

exp{b(X
ik
+X
il
)} ∆ exp (2a

i
+g
ik
+g
il
)d
i
(b) dF(a, g)

. (2·4)

The expressions in the numerator and the denominator of the last line are obtained from
(2·2), and the summation is over all n

i
(n
i
−1)/2 pairs in the set R

i
that consists of selections

of two possible ‘cases’ from any of the n
i
family members. The conditional likelihood

function for m families is the product

L (Y
1
, . . . , Y

m
, h )=a

m

i=1

exp{b(X
i1
+X
i2

)} ∆ exp (2a
i
+g
i1
+g
i2

)d
i
(b) dF(a, g)

W

k,lµR
i

exp{b(X
ik
+X
il
)} ∆ exp (2a

i
+g
ik
+g
il
)d
i
(b) dF(a, g)

,

(2·5)

where h= (m, b, l) and Y
i
= (Y
i1

, . . . , Y
in
i

). Note that, in the absence of genetic effects, in
which case dF(a, g) assigns all mass to g

i
= (0, . . . , 0), W

j
Y
ij
is the sufficient statistic for

the family-specific intercept m+a
i
, and the likelihood (2·5) reduces to

L (Y
1
, . . . , Y

m
, b)=a

m

i=1

exp{b(X
i1
+X
i2

)}

W

k,lµR
i

exp{b(X
ik
+X
il
)}

, (2·6)

just as in the case of conditional logistic regression (Cox, 1970, p. 45).

3. R

3·1. Bias calculations

To estimate b in (2·1) from families with two affected members, we need to maximise
the conditional likelihood given in (2·5). This is numerically challenging; see § 4. Standard
conditional logistic regression based on (2·6) is computationally stable and rapid. We are
thus interested in the properties of the estimator obtained from maximising (2·6), when
the true model is the one including the random effects a and g.
Following an approach by Neuhaus et al. (1992), we show the following result.

T 1. If b=0 in (2·5), then the maximum likelihood estimators b@* based on the
likelihood (2·5), but with a misspecified random eVects distribution, G(a, g), consistently
estimate zero.

Proof. Akaike (1973) and White (1982) show that the maximum likelihood estimator
under the false model converges to the value h*= (m*, b*, l*) which minimises the
Kullback–Leibler divergence between the true model F and the misspecified model G:

h*= arg min
c

E
X|∑Y

E
Y|X,∑Y

log
pr
F
(Y |h, X, W Y )

pr
G
(Y |c, X, W Y )

, (3·1)

where the expectation is taken with respect to the true model F. After differentiating the
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above expression with respect to c and some simplification, we see that h* has to satisfy

E
X qprF A∑ Y |h, XB ∑

y
pr
F Ay |h, X, ∑ YB (d/dc) pr

G
(y |c, X, W Y )

pr
G
(y |c, X, W Y ) r=0. (3·2)

When b=0, the distribution of Y under the true model F does not depend on X, and
equation (3·3) reduces to

pr
F A∑ YB ∑

y
pr
F Ay |∑ YB EX q(d/dc) pr

G
(y |c, X, W Y )

pr
G
(y |c, X, W Y ) r=0.

After calculating the derivative with respect to the component of c that corresponds to
the coefficient of X and taking expectations, see the Appendix for details, it can be seen
that the above score equation corresponding to b* is satisfied for b*=0 for all (m, l) and
(m*, l*). The remaining score equations determine (m*, l*) in terms of (m, l).When bN0,
misspecification of the random effects distribution results in inconsistent estimators b@*.
We cannot solve equation (3·2) for b* explicitly when bN0 for a general G, because the
calculations involve intractable expectations of nonlinear functions of X. %

From the Theorem we can derive the following corollary for conditional logistic
regression, that is based on a specific choice of misspecified random effects distribution
G, namely a distribution that assigns all mass to g= (0, 0, . . . , 0). This misspecification
corresponds to ignoring the g

ij
and using conditional logistic regression to estimate b.

C 1. (i) If b=0 in (2·5), then ignoring the random eVects g
ij

and using the
standard conditional logistic likelihood (2·6) will give consistent estimators of b=0.
(ii ) For small |b |N0, the estimator b* obtained from maximising (2·6) is biased toward

the null, that is |b* |<|b|, and the asymptotic relative bias is given by (A·3) in the Appendix.

The proof of the Corollary is in the Appendix.
We note the related result that the score test of the hypotheses H0 : b=0 derived
from the standard conditional regression has the correct size. The score test based
on (2·6) is W

i
(X
i1
+X
i2
−E
i
)/{W V

i
}D, where E

i
=2 W

l,k
(X
il
+X
ik
)/{n
i
(n
i
−1)} and

V
i
=2/{n

i
(n
i
−1)}{W

k,l
(X
ik
+X
il
)2}−E2

i
is the corresponding variance. Under the assump-

tions that b=0 and that the covariates are independent of a
i
and g, (X

i1
, . . . , X

in
i

) are
exchangeable. Therefore, from standard theory for U-statistics, the distribution of the
score statistic will tend to a standard normal distribution as the number of families
increases, or, for a fixed number of families, as the n

i
increase. Even though the standard

score test based on (2·6) has proper size, it is theoretically less powerful than a score test
based on (2·5).

3·2. An approximation to the full likelihood for a rare disease

Many problems that require an ascertainment correction concern a rare disease. In this
setting m is a large negative number. If the familial effect a, the environmental effect bX
and the genetic effects g are small compared to |m |, then exp (m+a

i
+g
ij
+bX

ij
)j 0 and

the disease probability given by (2·1) is small. Under these assumptions d
i
(b)j1 and

equation (2·4) is approximately

exp{b(X
i1
+X
i2

)} ∆ exp (2a
i
+g
i1
+g
i2

) dF(a
i
, g
i
)

W

k,lµR
i

exp{b(X
ik
+X
il
)} ∆ exp (2a

i
+g
ik
+g
il
) dF(a

i
, g
i
)
.
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The approximate conditional likelihood thus reduces to a weighted conditional logistic
likelihood:

pr AYi1 , . . . , Yini |Xi1 , . . . , Xini , ∑j Y
ij
=2B= exp{b(X

i1
+X
i2

)}w
12

W

j,lµR
i

exp{b(X
ij
+X
il
)}w
jl
, (3·3)

where the weights w
kl
=∆ exp (2a

i
+g
ik
+g
il
) dF(a

i
, g
i
) do not depend on X. We call the

solution to (3·3) a weighted conditional logistic regression estimator. If a
i
and the g

ij
’s

are independent with joint distribution F
a
(a)F
g
(g), the weights reduce to w

kl
=

∆ exp (g
ik
+g
il
) dF
g
(g) and can be calculated from the moment generating function of g

ik
and g

il
. In this case, the likelihood (3·3) depends only on pairwise distribution functions

of g
ik
and g

il
for all lNk. If all the family members have exchangeable genetic effects, for

example if a family consists only of first-degree relatives, the weights in the numerator
and denominator are all equal and cancel from the likelihood. In this case the likelihood
reduces to conditional logistic regression. For a general family structure with nonexchange-
able g

ij
’s, as would arise in a pedigree with varying degrees of kinship, we obtain the

following result.

C 2. If the rare disease approximation holds, the conditional logistic regression
estimators obtained by maximising (2·6) are consistent for b.

This result holds for arbitrary F(a, g). The proof is in the Appendix.

3·3. Explicit bias calculations for the sibling case-control design

A design popular in association studies matches each case patient to an unaffected
sibling. We calculate the bias explicitly for any value of b for the special case of a Bernoulli
covariate Xµ{0, 1}. Here the likelihood for m families is given by

pr (Y
1
, . . . , Y

m
, h )=a

m

i=1
pr (Y
i1
|Y
i1
+Y
i2
=1),

where the families are ordered such that Y
i1
denotes the case, and h= (m, b, l).

C 3. If X is Bernoulli with pr (X=1)=p, then the estimator b@* obtained from
maximising conditional logistic regression,

b@*= arg max
c

a
i

exp (cX
i1

)

exp (cX
i1

)+exp (cX
i2

)
,

converges to

b*=b+ log
w
1
(1, 0)+w

2
(0, 1)

w
1
(0, 1)+w

2
(1, 0)

, (3·4)

where

w
i
(X
1
, X
2
)= P exp (m+a+g

i
) dF(a, g)

{1+exp (m+a+g
1
+bX

1
)}{1+exp (m+a+g

2
+bX

2
)}

(i=1, 2).

Moreover, |b* |∏|b |.

The proof is in the Appendix.
For a and g normally distributed and independent with respective variances s2

a
and
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s2
g
and with corr (g1 , g2 )=0·5, we plot b−b* against s2

g
for b=1 in Fig. 1. Different curves

correspond to different values of m and s2
a
. The bias increases with the value of s2

g
and is

larger for m=−2 than for m=−5. For m=−5 and s2
g
=3, b*−b=−0·105 for s2

a
=0,

and −0·156 for s2
a
=3. For m=−2 and s2

g
=3, b*−b=−0·194 for s2

a
=0, and −0·197

for s2
a
=3.

–0·20
0

B
ia

s

sg
2

0·5 1 1·5 2 2·5

–0·18

–0·16

–0·14

–0·12

–0·10

–0·08

–0·06

–0·04

–0·02

–0·00

3

Fig. 1. Plot of bias, b*−b, versus s2
g
for various values of m and s2

a
.

4. S 

4·1. Preamble

We use simulated data to study the behaviour of the estimators based on the random
effects model (2·5), conditional logistic regression (2·6) and weighted conditional logistic
regression (3·3), and compare the results to the bias approximation given in (A·3). The
simulated datasets represent 100 families. For simplicity we assume that all families have
the same size, n

i
=6, and the same pedigree structure, described in § 4·2.

4·2. Genetic random eVects model

Fisher (1918) showed that the genetic variance for a trait can be divided into two
components, the additive genetic variance, which results from differences between homo-
zygotes, and the dominance variance, which results from specific effects of various alleles
in heterozygotes. We assume that the genetic variance for the latent liabilities g can be
similarly divided. Following Fisher, and assuming no dominance component of the vari-
ance, we model the covariance matrix of the g’s in the ith family, S

i
, as a function of the

degree of kinship between members in the family:

cov (g
ij
, g
il
)= (S

i
)
j,l
=
s2
g

2k(j,l)
. (4·1)

Here k( j, l) denotes the degree of kinship between members j and l in the ith family. For
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example, k( j, j )=0, and k( j, l)=1 if j and l are first-degree relatives, e.g. siblings, and
k( j, l)=2 if j and l represent a grandparent and a grandchild, or an aunt and a nephew.
Thus for each extra generation the covariance is multiplied by a factor of D. For unrelated
members of the family, such as spouses, k( j, l)=2 and (S

i
)
j,l
=0. The covariance matrix

corresponding to the family structure used in the example presented in Table 1, below, is
given by

S=s2
g A 1·0 0·0 0·5 0·5 0·25 0·25

0·0 1·0 0·5 0·5 0·25 0·25

0·5 0·5 1·0 0·5 0·25 0·25

0·5 0·5 0·5 1·0 0·5 0·5

0·25 0·25 0·25 0·5 1·0 0·5

0·25 0·25 0·25 0·5 0·5 1·0
B . (4·2)

This covariance matrix corresponds to the following ordering of family members: mother,
father, offspring 1, offspring 2, child 1 of offspring 2 and child 2 of offspring 2. We call
this pedigree structure 1. For the simulations of Table 2, below, we assumed that each
family consisted of mother, father and four children, representing pedigree structure 2,
that is (S

i
)
j,l
=0 for j=1 and l=2, and (S

i
)
j,l
=s2
g
/2 for all other jN l. Although we do

not use it in this paper, the covariance matrix of a genetic random effects model that
allows for an additive and a dominant component is (S

i
)
j,j
=s2
g
+s2
d
, (S
i
)
j,l
=1
2
s2
g
+1
4
s2
d
if

j and l are siblings and (S
i
)
j,l
=s2
g
/2k(j,l) for all other types of relative.

In what follows we will assume that a
i
and the g

ij
’s are normally distributed and a

i
is

independent of the g
ij
’s. Normality of g

ij
is a reasonable assumption if the genetic liability

is influenced by many genes (Fisher, 1918). Note that, if the rare disease assumption
holds in this setting, the weighted conditional logistic regression estimators b@ and s@2

g
obtained from (3·3) are asymptotically uncorrelated and independent, which can be seen
by calculating the off-diagonal term in the Fisher information matrix, namely

E C ∂∂b ∂∂s2
g
log

w
12
exp{b(X

1
+X
2
)}

Ww
ij
exp{b(X

i
+X
j
)}D=0,

where w
ij
=exp (s2

g
/2k(i,j) ).

4·3. Numerical methods for the random eVects model and weighted conditional logistic
regression

The parameters in the full random effects likelihood were estimated by direct maximis-
ation. To evaluate the integrals in the conditional likelihood function (2·5), we used Monte
Carlo integration. For each family, we drew independent, identically distributed samples
a
i
and (g

i1
, . . . , g

i6
), for i=1, . . . , N, and used the approximation

P exp (2a+g
1
+g
2
)

X6
j=1

{1+exp (m+a+bX
j
+g
j
)}

dF(a, g)j
1

N
∑
N

k

exp (2a
k
+g
k1
+g
k2

)

X6
j=1

{1+exp (m+a
k
+bX

j
+g
kj

)}
.

We chose N=100 and used the same Monte Carlo sample for the numerator and denomi-
nator of the conditional likelihood of each family to ensure that the conditional likelihood
was smooth in b. Different families were evaluated using independent Monte Carlo
samples. The advantage of Monte Carlo integration over Gaussian quadrature is that the
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required computations increase only linearly with the dimension of the integral, while the
numerical effort for Gaussian quadrature increases exponentially with the dimension of
the integral.
It is not possible to estimate m and s2

a
from these data if s2

g
=0, see equations (2·5) and

(2·6), or if the disease is rare; see equation (3·3) and recall that w
jl
depends only on s2

g
under independence of a

i
from g

ij
. Even with s2

g
>0, the ascertainment scheme yields little

information on m and s2
a
, and the profile likelihood in s2

a
is usually very flat in our

numerical studies. To overcome numerical instability resulting from lack of information
on m and s2

a
, and because we are primarily interested in inference on b, we replaced the

four-dimensional maximisation problem by a double-grid search and a two-dimensional
maximisation. For each mµ{−7,−6·5,−6, . . . ,−3·5,−3,−2·5,−2} and every
s2
a
µ{0, 0·5, 1, 1·5, 2, . . . , 19, 19·5, 20} we maximised the likelihood as a function of b and
s2
g
. The final estimator was the (b, s2

g
) pair that yielded the biggest likelihood over the

whole grid. Confidence intervals for b were based on the likelihood ratio statistic from
the full model (2·5). To see if such a confidence interval covers b, one only needs to
evaluate the likelihood at b@ and at b.
The maximisation of the likelihood (3·3) corresponding to weighted conditional logistic

regression is straightforward in the normal setting, as the weights can be calculated
explicitly, as w

jl
=exp (s2

g
/2k(j,l) ). Thus, standard optimisation programs were used to

maximise (3·3) jointly over b and s2
g
.

4·4. Results

Table 1 presents simulation results for b=1, m=−5 or −2, a Bernoulli covariate
Xµ{0, 1} with p=0·5, and various choices for values of s2

a
and s2

g
using the covariance

matrix (4·2). The random effects model (2·5) yielded nearly unbiased estimates for b=1
and near nominal 95% coverage of b for likelihood ratio based confidence intervals for
each of the parameter combinations studied in Table 1. Estimates of s2

g
had much larger

coefficients of variation than estimates of b, and there was a tendency to overestimate
s2
g
when the true value was 0·5. Unreported confidence intervals based on the Wald statistic

for b and s2
g
had slightly subnominal coverage.

In the cases where the rare-disease approximation holds, namely m=−5 with
s2
a
=0·5 or 1·0 and s2

g
=0·5 or 1·0, the estimates of b from conditional logistic regression

and weighted conditional logistic regression were nearly unbiased and the corresponding
Wald confidence intervals had nearly nominal coverage; see Table 1. Otherwise, the bias
is noticeable and in good agreement with the analytical approximation (A·3); see Table 3.
For example, for m=−5, s2

a
=3 and s2

g
=5, the bias of conditional logistic regression was

−0·286, whereas (A·3) yielded −0·285. The corresponding confidence intervals for b had
coverage 0·579 and 0·657 for weighted conditional logistic regression and conditional
logistic regression respectively. For m=−5, s2

a
=1 and s2

g
=5, the empirical bias of

conditional logistic regression was −0·237, compared to a value from (A·3) of −0·265.
As the values of s2

a
and s2

g
declined, relative to |m |, the performance of weighted con-

ditional logistic regression and conditional logistic regression improved. For example,
with m=−5, s2

a
=1 and s2

g
=1 the empirical bias of conditional logistic regression was

−0·057, compared to −0·045 from the analytical approximation (A·3). Weighted con-
ditional logistic regression and conditional logistic regression exhibit negligible bias and
near nominal coverage for b with m=−5, s2

a
=0·5 and s2

g
=0·5.

For more common diseases, with m=−2, the biases in weighted conditional logistic
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Table 1. Simulation results for estimation of b and s2
g
, with estimated standard errors in

parentheses, for pedigree structure 1

 (upper entries)
Two-level random effects model  ( lower entries)

m, s2
a
, s2
g

Mean b@ Coverage Mean s@2
g

Mean b@ Coverage Mean s@2
g

−5, 3·0, 5·0 0·957 (0·330) 0·947 4·848 (4·248) 0·692 (0·181) 0·579 1·626 (0·793)
0·714 (0·178) 0·675

−5, 1·0, 5·0 0·975 (0·302) 0·940 3·549 (4·199) 0·765 (0·189) 0·710 1·603 (0·682)
0·763 (0·186) 0·750

−5, 1·0, 1·0 1·038 (0·258) 0·930 1·257 (1·437) 0·944 (0·193) 0·930 0·759 (0·613)
0·943 (0·192) 0·940

−5, 0·5, 0·5 1·099 (0·217) 0·927 0·993 (0·970) 1·020 (0·193) 0·963 0·539 (0·567)
1·019 (0·192) 0·973

−5, 0·0, 0·0 1·024 (0·197) 0·941 0·380 (0·707) 0·999 (0·190) 0·948 0·259 (0·405)
0·998 (0·192) 0·947

−2, 3·0, 5·0 1·000 (0·344) 0·927 4·373 (4·851) 0·693 (0·177) 0·627 0·962 (0·580)
0·691 (0·173) 0·627

−2, 1·0, 5·0 1·007 (0·321) 0·940 5·133 (4·237) 0·707 (0·186) 0·640 1·106 (0·700)
0·705 (0·185) 0·640

−2, 1·0, 1·0 1·040 (0·223) 0·950 1·401 (1·249) 0·918 (0·151) 0·920 0·465 (0·520)
0·917 (0·151) 0·920

−2, 0·5, 0·5 1·067 (0·291) 0·930 1·229 (2·039) 0·961 (0·207) 0·920 0·387 (0·534)
0·960 (0·206) 0·920

−2, 0·0, 0·0 1·035 (0·251) 0·950 0·519 (1·584) 0·998 (0·184) 0·950 0·251 (0·360)
0·997 (0·185) 0·950

, weighted conditional logistic regression; , conditional logistic regression; Coverage, coverage for b.

Table 2. Simulation results for estimation of b and s2
g
, with estimated standard errors in

parentheses, for pedigree structure 2

 (upper entries)
Two-level random effects model  ( lower entries)

m, s2
a
, s2
g

Mean b@ Coverage Mean s@2
g

Mean b@ Coverage Mean s@2
g

−5, 3·0, 5·0 0·960 (0·296) 0·916 3·728 (3·527) 0·756 (0·177) 0·720 4·044 (6·775)
0·754 (0·176) 0·738

−5, 1·0, 1·0 1·025 (0·246) 0·959 1·693 (2·389) 0·925 (0·183) 0·928 1·365 (3·007)
0·924 (0·183) 0·940

−5, 0·5, 0·5 1·065 (0·212) 0·934 1·059 (1·210) 0·998 (0·180) 0·962 0·697 (0·805)
0·998 (0·179) 0·962

−2, 3·0, 5·0 0·981 (0·327) 0·933 4·937 (3·611) 0·706 (0·186) 0·587 3·006 (5·957)
0·705 (0·185) 0·615

−2, 1·0, 1·0 1·043 (0·257) 0·930 1·738 (1·831) 0·906 (0·192) 0·887 0·759 (1·786)
0·905 (0·191) 0·890

−2, 0·5, 0·5 1·046 (0·234) 0·973 1·456 (1·556) 0·929 (0·172) 0·927 0·814 (2·801)
0·929 (0·171) 0·927

, weighted conditional logistic regression; , conditional logistic regression; Coverage, coverage for b.
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Table 3. Relative bias (b@−b)/b computed from (A·3) and corresponding
average estimated relative bias from simulations

Pedigree structure 1 Pedigree structure 2

Bias from Bias from Bias from Bias from
m, s2
a
, s2
g

(A·3) simulations m, s2
a
, s2
g

(A·3) simulations

−5, 3·0, 5·0 −0·2850 −0·2861 −5, 3·0, 5·0 −0·2559 −0·2440
−5, 1·0, 5·0 −0·2651 −0·2372 −5, 1·0, 1·0 −0·0406 −0·0750
−5, 1·0, 1·0 −0·0458 −0·0576 −5, 0·5, 0·5 −0·0082 −0·0070
−5, 0·5, 0·5 −0·0110 −0·0102 −2, 3·0, 5·0 −0·2839 −0·2940
−5, 0·0, 0·0 0·0000 −0·0020 −2, 1·0, 1·0 −0·0786 −0·0940
−2, 3·0, 5·0 −0·3159 −0·3090 −2, 0·5, 0·5 −0·0401 −0·0510
−2, 1·0, 5·0 −0·3150 −0·2959
−2, 1·0, 1·0 −0·0935 −0·0837
−2, 0·5, 0·5 −0·0464 −0·0402
−2, 0·0, 0·0 0·0000 −0·0031

regression and conditional logistic regression were more pronounced. Even for
s2
a
=s2
g
=1, there remained an estimated bias for b of −0·083 for conditional logistic

regression, and for s2
a
=s2
g
=0·5 an estimated bias of −0·04. These biases were again in

good agreement with the respective biases calculated from (A·3), namely−0·09 and−0·04.
The weighted conditional logistic regression procedure underestimated s2

g
by a factor of 2

or more for each of the sets of parameter values in Table 1.
The random effects model (2·5) yielded reliable inference on b for pedigree structure 2,
see Table 2, just as for pedigree structure 1, see Table 1, and the tendency to overestimate
s2
g
=0·5 persisted with pedigree structure 2. The magnitudes of the bias in b for weighted

conditional logistic regression and conditional logistic regression with pedigree structure 2
were similar to those with pedigree structure 1. Estimates of s2

g
from weighted conditional

logistic regression exhibited less downward bias with pedigree structure 2 than with pedi-
gree structure 1, however. For example, for m=−5, s2

a
=3 and s2

g
=5, the average estimate

of s2
g
was 4·04 for pedigree structure 2, see Table 2, compared to only 1·63 for pedigree

structure 1, see Table 1. Likewise, for m=−2, s2
a
=3 and s2

g
=5, the mean estimate of

s2
g
from weighted conditional logistic regression was 3·00 for pedigree structure 2 compared

to 0·96 for pedigree structure 1.
The performance of the estimates of s2

g
based on the random effects model (2·5) deterio-

rated as s2
g
got smaller. This is because the estimator is constrained to s2

g
�0. For example,

for m=−5, s2
a
=0·5 and s2

g
=0·5 in Table 1, the average estimate of s2

g
was 0·99, which

corresponds to a relative bias of 99%. For m=−2, s2
a
=0·5 and s2

g
=0·5 the relative bias

was even more pronounced, as the average estimate of s2
g
was 1·23. For m=−5, s2

a
=0

and s2
g
=0, the average estimate of s2

g
was 0·380, but the average estimate of b, 1·024,

indicated that b@ is nearly unbiased.

5. A  

The data derived from 65 families with n
i
=6 members, and each family had exactly

two members affected with nasopharyngeal carcinoma. These data represent a subset of
the families that participated in the complete study. The covariates we considered were
X1=1 for ‘ever smoker’ and 0 for ‘never smoker’, X2=1 for female and 0 for male, and
two age-group indicators, X3=1 for age∏46 years, X3=0 otherwise, and X4=1 for age
46–57 years, X4=0 otherwise. The�57 age group is the reference group. The conditional
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Table 4. Nasopharyngeal carcinoma data results for estimation of b and s2
g
,

with estimated standard errors in parentheses

Parameter Two-level random effects model  

b1 0·1536 (0·2684) 0·1643 (0·2603) 0·1706 (0·2606)
b2 −0·8794 (0·2581) −0·8597 (0·2517) −0·8582 (0·2525)
b3 −0·2666 (0·3123) −0·2742 (0·3046) −0·2736 (0·3053)
b4 0·5984 (0·2986) 0·5895 (0·2871) 0·5872 (0·2869)
s2
g

0·6511 (0·7511) 0·3544 (0·8502) Not available

Loglikelihood −162·965 −163·455 −163·544

, weighted conditional logistic regression; , conditional logistic regression.

likelihood model, weighted conditional logistic regression and conditional logistic
regression were fitted to the data.
To fit model (2·5), we chose the random genetic effects distribution to be multivariate

normal with an additive covariance structure, specified in (4·1). Different covariance
matrices were required for different family structures. The random familial effect a

i
was

also assumed to be normally distributed and independent of the g
ij
. The numerical

methods in §§ 4·2 and 4·3 were used to maximise the loglikelihood for model (2·5). The
grid search on m and s2

a
resulted in the estimates m@=−3·5 and s@2

a
=0.

Table 4 presents the point estimates of b and standards errors, in parentheses, for each
model. All three models suggest that two of the covariates have statistically significant
nonnull effects, namely gender, X2 , and the 46–57 age group, X4 .
The weighted conditional logistic regression and conditional logistic regression estimates

of the coefficients for these variables are slightly smaller in magnitude than the estimates
based on (2·5), as one would anticipate from Corollary 1. The estimates of b2 and b4 are−0·8794 and 0·5984 respectively, for the random effects model, and −0·8582 and 0·5872
respectively, for conditional logistic regression. The coefficients for X1 , smoking, and X4 ,
the 46–57 age group, are not significantly different from zero. The weighted conditional
logistic regression and conditional logistic regression estimates of b for these two covariates
are not smaller in magnitude than estimates from (2·5). This may reflect random variation
in the estimates or noise introduced by the Monte Carlo integration in a setting with
small values of b and small genetic variation, s2

g
.

A notable feature of Table 4 is the close agreement among the estimates of b for all the
models. This may reflect the fact that nasopharyngeal carcinoma is a relatively rare disease
in Taiwan, and that s2

g
is comparatively small. In this situation the use of the much simpler

conditional logistic regression or weighted conditional logistic regression procedure may
be justified with little danger of serious bias. The loglikelihood of (2·5), −162·965, only
decreased to −163·544 for conditional logistic regression and −163·455 for weighted
conditional logistic regression, which does not suggest a need for the more complex
random effects model with three more parameters than conditional logistic regression.
Before drawing firm conclusions on which model to use, however, the full dataset needs

to be examined with a dominant as well as an additive component to the genetic covari-
ance, and one needs to study covariates with larger log-relative-odds, b, for which the
bias towards the null may be more striking.
Our preliminary findings are consistent with earlier work demonstrating lower risk in

women and elevated risk in the 46–57 year age group in Taiwan (Hildesheim & Levine,
1993). Cheng et al. (1999) also found a nonsignificant increase in risk associated with
smoking classified as ever or never smoker.
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6. D

We have proposed methods based on a two-stage random effects model (2·1) to account
for genetic effects in family studies. The conditional likelihood (2·4) takes into account
the ascertainment scheme.
Our analytic work and simulation studies show that conditional logistic regression can
yield biased estimators of b. There is no bias, however, when b=0, and the bias will be small
when the genetic random effects are small, or when m+a

i
+g
ij
+bX

ij
%0 for all subjects. If

g
ij
=0 for all i and j, then model (2·1) reduces to a logistic model with a random intercept,

for which conditional logistic regression yields unbiased results of b. Gail et al. (1984) and
Neuhaus (1993) showed how unconditional logistic regression assuming a constant intercept
leads to biased estimators of b when g

ij
=0. The condition m+a

i
+g
ij
+bX

ij
%0 is satisfied

if the disease is rare and bX
ij
, a
i
and g

ij
are small compared to |m |. In this setting, and under

the normal random effects model in § 4·1, the conditional likelihood (2·4), which is well
approximated by (3·3), provides little information on m and s2

a
. If, in addition, the bivariate

distributionsF(g
il
, g
ik
) are all equal, as might occur in a study of siblings, then the conditional

likelihood (2·4) provides little information on the parameters of F
g
; see equation (3·3). In

each of these cases, however, conditional logistic regression can be relied on to provide valid
inference on b, the parameter of primary interest in this paper. Otherwise, one is forced to
use more complex methods based on the conditional random effects likelihood (2·4). This
approach has its own drawbacks. The computations are difficult and specialised. Although
the Monte Carlo approach worked well in our examples, larger Monte Carlo samples or
other methods may be needed for larger pedigrees. More fundamentally, often one does not
know the precise nature of the genetic influences and hence the distribution of g

ij
. One

approach might be to compare results from conditional logistic regression with the results
from model (2·5), using the distribution for the g

ij
’s in § 4. If the results are similar, one can

probably rely on conditional logistic regression. If not, a broader range of models for the
distribution of the g

ij
needs to be explored tomake sure that inference on b from (2·5) is robust.

If families were selected at random, then standard Gibbs sampling methods could be
used to estimate the parameters of model (2·1). Since our ascertained families do not
represent the entire space of possible outcomes, however, standard application of the
Gibbs sampler yields biased estimates of the parameters in model (2·1); see Burton
et al. (2000).
If the sole purpose of a study were to investigate the effects of measured covariates on
disease risk, then other designs such as cohort or case-control designs could be used.
Analyses would usually be based on the fixed effects ‘population averaged’ model described
in § 2, with a

i
and g

ij
omitted. If the random effects model (2·1) is correct, however,

such fixed effects models would result in biased estimators of the covariate effects at the
individual level (Zeger et al., 1988).
Two-stage nested random effects models for dichotomous outcomes also arise in other
settings. For example, model (2·1) could be used in longitudinal studies, where Y

ij
denotes

the jth repeat of a measurement on the ith individual. Another application would be to
matched case-control studies in which the case and control have nonidentical unmeasured
exposures to factors other than the measured exposure X.

A

We thank Allan Hildesheim, for bringing the problem to our attention, Ray Carroll,
Lynn Goldin, Paul Burton, Alisa Goldstein, Louise Ryan and the referees, for many helpful
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A

Proofs

Calculation of the derivative for proof of T heorem 1. Let c denote the coefficient of X. We now
show that, if b=0, then

E
X
{d/dc pr

G
(y |c, X, WY )/pr

G
(y |c, X, WY )}=0

is satisfied for c=0. Note that, if c=0, pr
G
does not depend on X, and thus it suffices to show

that E
X
{d/dc pr

G
(y |c, X, WY )}=0 for c=0. Recall that logit{p

ij
(c)}=m+a

i
+g
ij
+cX

ij
. Let

N(c)= ∑
k,lµR
i

exp{c(X
ik
+X
il
)} P exp (2a

i
+g
ik
+g
il
)d
i
(c) dG(a, g),

with d
i
(c) defined in (2·3). Then d/dc pr

G
(y |c, X, WY )=A(c)/N(c)−B(c)/N2(c), where

A(c)=exp{c(X
i1
+X
i2

)} P exp (2a
i
+g
i1
+g
i2

)d
i
(c) qXi1+X

i2
−∑
j

X
ij
p
ij
(c)r dG(a, g),

B(c)=exp{c(X
i1
+X
i2

)} P exp (2a
i
+g
i1
+g
i2

)d
i
(c) dG(a, g)

×∑
k,l
P exp (2a

i
+g
ik
+g
il
)d
i
(c) exp{c(X

ik
+X
il
)}qXik+X

il
−∑
j

X
ij
p
ij
(c)r dG(a, g),

with p
ij
defined in (2·1) as a function of c. As N(0) is independent of X and, since E(X)=0,

E{A(0)}=0 and E{B(0)}=0 the equation E
X
{d/dc pr

G
(y |c, X, WY )}=0 is satisfied for c=0.

Calculation of the second derivative shows that c=0 gives a minimum. Thus for b=0 the left-
hand side of equation (3·2) corresponding to the coefficient of X is zero independent of the choice
of G(a, g). For bN0, equation (3·2) is typically not satisfied for c=b and thus yields inconsistent
estimators of the true b.

Proof of Corollary 1 (ii). Without loss of generality let E(X)=0. For brevity we omit the family
index, set

w
ij
(X)¬ P exp (2a+g

i
+g
j
)d(b) dF(a, g)

and let logit{p
m
(c)}=m+a+g

m
+cX

m
. Note that

w∞
ij
(X)=

d

db
w
ij
(X)=−∑

m
X
m P exp (2a+g

i
+g
j
)d(b)p

m
(b) dF(a, g).

Then b* is the solution of equation (3·2), which can be written as

E
X
∑
l,mµR

(X
l
+X
m
)w
lm

(X) exp{b(X
l
+X
m
)}

=E
X

W

l,mµR
w
lm

(X) exp{b(X
ln
+X
m
)}W
i,jµR

(X
i
+X
j
) exp{b*(X

i
+X
j
)}

W

k,lµR
exp{b*(X

k
+X
l
)}

. (A·1)
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Linearising the right-hand side of equation (A·1) around the true value b we obtain

E
X
∑
l,m

(X
l
+X
m
)w
lm

(X) exp{b(X
l
+X
m
)}

−E
X C∑
l,m

w
lm

(X) exp{b(X
l
+X
m
)}
W

l,m
(X
l
+X
m
) exp{b(X

l
+X
m
)}

W

j,k
exp{b(X

j
+X
k
)} D

= (b*−b)E
X
∑
l,m

w
lm

(X) exp{b(X
l
+X
m
)}

×AWl,m (Xl+X
m
)2 exp{b(X

l
+X
m
)}

W

j,k
exp{b(X

j
+X
k
)}

−CWl,m (Xl+X
m
) exp{b(X

l
+X
m
)}

W

j,k
exp{b(X

j
+X
k
)} D2B . (A·2)

With

q
lm
¬

exp{b(X
l
+X
m
)}

W

j,k
exp{b(X

j
+X
k
)}

, Y¬C∑
l,m

w
lm

(X) exp{b(X
l
+X
m
)}D1/2,

the square root being well defined as the expression is always positive, we rewrite the coefficient
of (b*−b) as G(b)=E

X
[W
l,m

Y 2(X
l
+X
m
)2q
lm
−{W

l,m
Y (X
l
+X
n
)q
lm

}2], which has the form of a
variance, and thus is always positive. Denote the left-hand side of equation (A·2) by H(b) and let
b>0. Since E(X)=0, we have H(0)=0. Straightforward calculation shows that

H∞(0)=
E(X2 )

n
∑
l,m
P exp (2a+g

l
+g
m
)d(0) q−np

l
(0)−np

m
(0)+2 ∑

n

i=1
p
i
(0)r dF(a, g)<0.

Thus, for small values of b, H(b)<0, which implies that (b*−b) is negative. A similar argument
with b<0 shows that (b*−b) is positive, which proves the claim.
If we rewrite equation (A·2) in the form b*−b=H(b)/G(b)jbH∞(0)/G(0) and evaluate the

expectations with respect to X, an approximation to the relative bias for small b is given by

b*−b
b
=
W

l,m
∆ exp (2a+g

l
+g
m
)d(0){−np

l
(0)−np

m
(0)+2Wn

i=1
p
i
(0)} dF(a, g)

2(n−2)W
l,m
∆ exp (2a+g

l
+g
m
)d(0) dF(a, g)

. (A·3)

We note that the bias does not depend on E(X2 ), which cancels out when E(X2 ) divides H∞(0).
Based on results from Table 3 and on comments of a reviewer, we conjecture that the bias
approximation is monotone in the parameters m, s2

a
and s2

g
, but we were unable to prove it.

Proof of Corollary 2. For brevity we omit the family index and set

w
ij
¬ P exp (2a+g

i
+g
j
) dF(a, g).

Noting that the true model is now given by (3·3), we find the estimator as the solution of
equation (3·2), which can be rewritten as

E
X AC∑

n,m
(X
n
+X
m
)w
nm
exp{b(X

n
+X
m
)}∑
k,l
exp{b*(X

k
+X
l
}

− ∑
n,m

w
nm
exp{b(X

n
+X
m
)}∑
i,j

(X
i
+X
j
) exp{b*(X

i
+X
j
)}DN∑

k,l
exp{b*(X

k
+X
l
)}B=0.

Noting that the weights w
ij
do not depend on X, we see that for b*=b the above equation is

satisfied, because the exchangeability of the X’s in the population implies that

E
X
[(X
n
+X
m
) exp{b(X

n
+X
m
+X
k
+X
l
)}]=E

X
[(X
k
+X
l
) exp{b(X

n
+X
m
+X
k
+X
l
)}].
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Proof of Corollary 3. For this setting equation (3·1) reduces to

E
X CX1w1 (X1 , X2 ) exp (bX1 )+X

2
w
2
(X
1
, X
2
) exp (X

2
)

−
{w
1
(X
1
, X
2
) exp (bX

1
)+w

2
(X
1
, X
2
) exp (bX

2
)}{X
1
exp (b*X

1
)+X

2
exp (b*X

2
)}

exp (b*X
1
)+exp (b*X

2
) D= 0.

The definition of w
i
(X1 , X2 ) is stated in Corollary 3. Evaluating the expectation results in (3·4).

Next we determine the sign of the bias term. Straightforward calculation yields

w
1
(1, 0)+w

2
(0, 1)−w

1
(0, 1)−w

2
(1, 0)

= P exp (2a+2m){1−exp (b)}{exp(g
1
)−exp (g

2
)}2

×[{1+exp (m+a+g
1
+b)}{1+exp (m+a+g

2
)}{1+exp (m+a+g

1
)}

×{1+exp (m+a+g
2
+b)}]−1 dF(a, g).

Thus w1 (1, 0)+w2 (0, 1)−w1 (0, 1)−w2 (1, 0) is negative for b>0 and positive for b<0. As
w1 (0, 1)+w2 (1, 0)>0, we obtain that {w1 (1, 0)+w2 (0, 1)}/{w1 (0, 1)+w2 (1, 0)}>1 for b<0, and
<1 for b>0, which corresponds to a bias towards the null in equation (3·4).
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